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In this paper, the motion of a Bernoulli}Euler cantilever beam clamped on
a moving cart and carrying an intermediate lumped mass is considered. The
equations of motion of the beam}mass}cart system are analyzed through
unconstrained modal analysis, and a uni"ed characteristic equation for calculating
the natural frequencies of the system is established. The changes of natural
frequencies and the corresponding mode shapes with respect to the changes in the
ratios between the beam mass, the lumped mass and the cart mass and to the
concentrated position of the lumped mass are investigated with the frequency
equation, which can be generally applied to this kind of system. The exact and
assumed-mode solutions including the dynamics of the base cart are obtained, and
the open-loop responses of the system by arbitrarily designed forcing functions are
given by numerical simulations. The results match well with physical phenomena
even in the extreme cases where the mass is attached to the bottom and to the top of
the beam.

( 2000 Academic Press
1. INTRODUCTION

There has been a lot of research work on the vibration analysis of #exible structures
or #exible beams subject to various boundary and load conditions. One kind of
such beam}mass systems considered in a vast number of previous studies is
a uniform cantilever beam which carries a concentrated mass or body at one end
and the other end is "xed or restrained to a large inertial frame or the ground [1}6].
0022-460X/00/080591#25 $35.00/0 ( 2000 Academic Press
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Bhat and Wagner [1] obtained the exact frequency equations for a uniform
cantilever carrying a slender tip mass whose center of gravity did not coincide with
the attachment point. Anderson [2] obtained the frequency equation for
a cantilever with an asymmetrically attached tip mass. Parnell and Cobble [3]
solved the displacement equation for a uniform cantilever beam with
a concentrated mass at one end using the Laplace transform under generally
distributed lateral load and arbitrary boundary and initial conditions. Laura et al.
[4] determined natural frequencies and modal shapes of a clamped-free beam
which carried a "nite mass at the free end. GuK rgoK ze [5] determined the
approximate fundamental bending eigenfrequency of a restrained cantilever beam
carrying a tip heavy body. He also derived the frequency equation of a clamped-free
beam with tip mass when a spring-mass system was attached to it [6].

The other type of the beam-mass system considered is a uniform beam carrying
a concentrated mass or system of masses located at an arbitrary position along the
beam [7}15]. Chen [7] formulated and solved the problem of vibration of a simply
supported beam carrying a mass concentrated at the middle span of the beam. Goel
obtained the natural frequencies with respect to the change of the ratio between the
beam mass and the concentrated mass for the beam which was free at one end with
the other end hinged by a rotational spring [8], and both ends were restrained by
rotational springs [9]. Amba-Rao [10] obtained a closed-form solution for solving
the problem of free vibration of a partially "xed beam with unequal end "xities and
carrying an arbitrary number of concentrated masses in an arbitrary way. Pan [11]
solved the vibrational motion of a simply supported and "xed-free beam carrying
a system of heavy bodies. Stanis\ icH and Hardin [12] developed a theory describing
the motion of a beam under an arbitrary number of moving masses. Maurizi and
BelleH s compared the fundamental frequency of a simply supported beam with
a concentrated mass suited at an arbitrary point along the beam by
Bernoulli}Euler and Timoshenko theories [13]. They also determined the
fundamental frequency according to Timoshenko's theory for the case of a uniform
cantilever beam with an arbitrarily located mass [14]. Low [15] obtained the
explicit frequency equations of a beam carrying a concentrated mass for various
boundary conditions by dividing the beam into two parts at the point where the
concentrated mass was attached and considering continuity conditions at the point.

All the above studies, however, dealt with beam}mass systems where at least one
part of the beams was "xed or restrained at a large inertial frame, and thus ignored
the dynamics of the base frame. When a #exible beam carrying a concentrated mass
is "xed on a moving cart, and if the beam mass and the concentrated masses can no
longer be negligible compared with that of the cart, the motion of the beam}mass
system a!ects that of the cart, and vice versa. In this case, therefore, all the dynamics
of the beam, the concentrated mass and the cart should be considered
simultaneously to obtain the characteristics of the vibrational motion of the system.

For example, when reclaimers in automated warehouses, forklift cars or ladder
cars carry heavy loads from a high place to another place, vibrational motions due
to the #exibility of the main beam are unavoidable, even though they have
truss-structured beams. Furthermore, when the load moves along the #exible beam,
the natural frequencies of the beam and the vibrational motion vary along the
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position of the load. Therefore, to analyze the total motion of the beam}mass}cart
system, the rigid body motion of the cart as well as the vibrational motion of the
beam}mass system should be included in the analysis. Models similar to this
beam}mass}cart system can be found in civil and military airplane wings designed
to carry heavy external stores along their span and in antennas operated in space
[16].

Concerning the researches on the vibrational behavior of #exible beams attached
to a moving base, To [17] calculated natural frequencies and mode shapes of
a mast antenna structure, but he modelled it as a cantilever beam with base
excitation and tip mass because the total mass of the beam}mass system is
negligible compared with that of the base. Ge et al. [18] presented asymptotically
stable end-point regulators for a #exible beam "xed on a moving base and carrying
a lumped tip mass, and simulated their performances utilizing the constrained
modal analysis. Park et al. [19] obtained equations of motion, frequency equations
and exact solutions of the motion of a #exible beam "xed on a moving cart and
carrying a lumped tip mass using unconstrained modal analysis. Garcia and Inman
[20] considered servo sti!ness as well as natural boundary conditions to "nd
eigenfunctions and the corresponding eigenvalue equations of a single-link #exible
beam that was undergoing slewing motion at an actively controlled pinned end,
while the other end was free. The vibration of #exible beams attached to moving
supports has been also studied for vibration analysis and active control of robotic
manipulators with elastic links [21}25].

The target of this research is the modelling and motion analysis of
a Bernoulli}Euler beam "xed on a moving cart and carrying a concentrated mass
attached to an arbitrary position along the beam. Another purpose of this research
is to obtain a general uni"ed frequency equation for the beam}mass}cart system
and to investigate the change of natural frequencies and the corresponding mode
shapes with respect to the changes in mass ratios of the system and to the changes
of the position of the concentrated mass. The exact and assumed-mode solutions
including the dynamics of the base cart are obtained, and the open-loop responses
of the beam}mass}cart system by an arbitrarily designed forcing function are also
given.

In the following section the equations of motion of the beam}mass}cart system is
derived, and the frequency equation is described in section 3. Numerical
simulations to obtain the open-loop responses of the system are reported in section
4, followed by the conclusions.

2. EQUATIONS OF MOTION

Figure 1 shows the beam}mass}cart system considered in this study. The elastic
beam is assumed to follow the Bernoulli}Euler beam model and to be clamped
tightly on the moving cart.

The elastic beam with a concentrated mass at its mid-span can be considered as
two sub-beams divided by the mass [15]. In this paper, however, the d-function
[8}12] is adopted to represent the e!ect of the mass concentrated at an arbitrary
position along the #exible beam. The equation of motion and the boundary



Figure 1. The beam}mass}cart system considered.

594 S. PARK E¹ A¸.
conditions of the beam}mass}cart system in Figure 1 are derived by Hamilton's,
principle as follows [26]:

MxK#P
l

0

[o
0
#md(y!h)] (xK#wK ) dy"f (t), (1)

EIw@@@@#[o
0
#md(y!h)](xK#wK )"0, (2)

w(0, t)"w@(0, t)"EIwA(l, t)"EIw@@@(l, t)"0, (3)

where M is the mass of the cart, m is the mass of the concentrated mass, l is
the length of the elastic beam, o

0
is the mass per unit length of the elastic beam

without concentrated mass, EI is the #exural rigidity of the unloaded beam, x is the
position of the cart, w(y, t) is the de#ection of the beam at y, and d(y!h) is
the Dirac d-function. In the above equations, dots denote di!erentiations with
respect to time and primes denote di!erentiations with respect to the spatial co-
ordinate y.

As a special case of the beam}mass}cart system shown in Figure 1, if the lumped
mass is concentrated at the tip of the beam, the e!ect of the lumped mass is included
in the boundary conditions, and thus the equations of motion and the boundary
conditions can be represented as follows:

MxK#m(xK#wK
T
)#o

0 P
l

0

(xK#wK ) dy"f (t), (4)

EIw@@@@#o
0
(xK#wK )"0, (5)
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w(0, t)"0, w@(0, t)"0,
(6)

EIwA( l, t)"0, EIw@@@(l, t)"m(xK#wK
T
),

where w
T
(t)"w(l, t) is the de#ection at the tip of the beam.

3. MODAL ANALYSIS

3.1. UNCONSTRAINED MODAL ANALYSIS

Analyzing equations (1) and (2) by forcing xK (t) to zero is the constrained modal
analysis. In this paper, for the exact modal analysis, the equations of motion are
analyzed utilizing the unconstrained modal analysis [25, 27] without forcing xK (t) to
zero. Hence, the position of the cart, x (t), can be assumed to have a solution of the
form

x(t)"a(t)#bq(t), (7)

where a(t) describes the motion of the center of mass, and the de#ection of the beam
at y, w(y, t), is assumed to have a solution of the form

w(y, t)"/(y)q(t). (8)

Then, the motion of the center of mass without perturbation can be obtained as

M
t
aK (t)"f (t) (9)

if b satis"es

b"!

m
M

t(h)!
o
0

M P
l

0

t(y) dy, (10)

where M
t
"M#m#m

b
is the total mass of the beam}mass}cart system, m

b
"o

0
l

is the mass of the #exible beam, and

t(y)Ob#/(y). (11)

On the other hand, substitution of equations (7) and (8) into equation (2) yields

EIt@@@@(y)q (t)#[o
0
#md(y!h)]t(y)qK (t)"![o

0
#md (y!h)]aK (t). (12)

To get the normal mode solutions, where the e!ect of the external force vanishes,
one can decompose equation (12) into two equations as follows:

qK (t)#u2q(t)"0, (13)

EIt@@@@ (y)!u2[o
0
#md(y!h)]t (y)"0, (14)
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where u is the natural frequency of the beam}mass}cart system, and the boundary
conditions in equation (3) become

t(0)"b, t@(0)"0, tA(l )"0, t@@@ (l )"0. (15)

The Laplace transform of equation (14), considering equation (15), leads to the
following equation:

t1 (s)"
s3

s4!k4
b#

s
s4!k4

tA(0)#
t@@@(0)
s4!k4

#

mw2t(h)
EI

e~hs

s4!k4
, (16)

where t1 (s) represents the transformed function of t(y) and

k4"o
0
u2/EI. (17)

The inverse Laplace transform of equation (16) gives the general solution of
equation (14) as follows:

t(y)"
b
2

(cos ky#cosh ky)!
tA(0)
2k2

(cos ky!cosh ky)!
t@@@ (0)
2k3

(sin ky!sinh ky)

!

mu2t(h)
2EIk3

; (y!h) [sin k (y!h)!sinh k(y!h)], (18)

where ; (y!h) is a unit step function at y"h. The constants tA(0) and t@@@(0) can
be obtained from the last two boundary conditions of equation (15) as follows:

tA(0)"
mu2t(h)

2EIk
1

1#cos kl cosh kl
M[cos k (l!h)#cosh k (l!h)] (sin kl#sinh kl)

![sin k(l!h)#sinh k (l!h)] (cos kl#cosh kl)N#bk2
sin kl sinh kl

1#cos kl cosh kl

(19)

and

t@@@(0)"!

mu2t(h)
2EI

1
1#cos kl cosh kl

M[cos k (l!h)#cosh k (l!h)]

](cos kl#cosh kl)#[sin k (l!h)#sinh k(l!h)] (sin kl!sinh kl)N

!bk3
coskl sinh kl#sin kl cosh kl

1#coskl cosh kl
. (20)
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Thus, from equations (18)}(20), t(y) is obtained as

t(y)"A (y)t(h)#B(y)b, (21)

where

A(y)"
mu2

4EIk3 G
cos ky!cosh ky
1#cos kl cosh kl

[(sin k(l!h)#sinh k(l!h)) (cos kl#cosh kl )

!(cos k(l!h)#cosh k (l!h)) (sin kl#sinh kl)]

#

sin ky!sinh ky
1#cos kl cosh kl

[(sin k(l!h)#sinh k (l!h))(sin kl!sinh kl)

#(cos k (l!h)#cosh k(l!h)) (cos kl#cosh kl )]

!2;(y!h) [sink (y!h)!sinh k(y!h)]H , (22)

and

B(y)"
1
2 Ccos ky#cosh ky!

sin kl sinh kl
1#cos kl cosh kl

(cos ky!cosh ky)

#

cos kl sinh kl#sin kl cosh kl
1#cos kl cosh kl

(sin ky!sinh ky)D. (23)

Integration of equation (2) with respect to y and substitution of equation (1) into
the resulting equation give

MxK#EIw@@@(0, t)"f (t). (24)

When f (t)"0, substitution of equations (7), (8) and (13) into equation (24) yields

b"
EI

Mu2
/@@@(0)"

EI
Mu2

t@@@ (0). (25)

From equations (20) and (25), b is obtained as

b"Ct(h)#Db, (26)
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where

C"!

m
2M

1
1#cos kl cosh kl

M[cosk (l!h)#cosh k(l!h)] (cos kl#cosh kl)

#[sin k (l!h)#sinh k(l!h)] (sin kl!sinh kl)N, (27)

and

D"!

o
0

Mk
sin kl cosh kl#cos kl sinh kl

1#cos kl cosh kl
. (28)

Then, equations (21) and (26) give

t(y)"CA (y)#
C

1!D
B(y)Dt (h)OF(y)t(h). (29)

3.2. THE FREQUENCY EQUATION

Equation (29), when y"h, gives the following equation:

[1!D!A (h)#A(h)D!B(h)C]t(h)"0. (30)

Since t(h)"0 yields a trivial solution, the inner part of the bracket in equation (30)
must vanish. From this condition, after some mathematical manipulations, the
frequency equation is obtained as follows:

1#cos m cosh m

#

r
1
4

[cos m cosh (m!2g)#cos (m!2g) cosh m#sin m sinh (m!2g)

!sin (m!2g) sinh m#2 cos m cosh m#4 cos g cosh g]

#

r
2
m

(sin m cosh m#cos m sinh m)

#

r
3
m

4
[2 sin (m!g) cosh (m!g)!2 cos (m!g) sinh (m!g)#2 cos g sinh g

!2 sin g cosh g#cos (m!2g) sinh m!sin m cosh (m!2g)

#cos m sinh m!sin m cosh m]"0, (31)

where r
1
"m/M, r

2
"m

b
/M, r

3
"m/m

b
, m"kl and g"kh.

Equation (31) is general and can be applied to "nd the frequency equation of this
kind of beam}mass system. For example, if the concentrated mass is located at the
tip, then m"g; if the mass is attached to the bottom of the #exible beam, then g"0,
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and consequently, the last term on the left-hand side of equation (31) vanishes. If the
#exible beam carries no concentrated mass, then r

1
"0 and r

3
"0, and if one end of

the #exible beam is "xed at a large inertial frame, i.e., MPR, then r
1
"0 and r

2
"0.

Table 1 shows several cases of the beam}mass system, appropriate conditions in
equation (31) and the resulting frequency equations. In Table 1, the frequency
equation for the "rst system is a well-known one for the "xed-free beam without
lumped mass. The frequency equation of the second system in Table 1 is also
obtained by solving the equations of motions of the sixth system, equation (4)} (6),
with constrained modal analysis [19]. The frequency equation of the third system
in Table 1 is exactly the same with the result by Low [15] under the same boundary
conditions. This equation can also be obtained by solving the beam}mass}cart
system in Figure 1 by the constrained mode expansion method by letting xK (t) be
zero in equations (1) and (2). The frequency equation of the "fth system is the same
as that of the fourth system if the base mass, M, in the fourth system becomes
m#M. The frequency equation of the sixth system in Table 1 is obtained by
solving equations (4)}(6) using the same method described in the previous
subsection [19].

The modelling of the fourth system in Table 1 is similar to modelling a slewing
structure with an elastic beam attached to a joint having rotational inertia. The
eigenfrequencies of a slewing elastic beam are between those of a pinned-free beam
and a clamped-free beam [20]. The frequency characteristics of the beam}
mass}cart system are also changed with respect to the changes in the mass ratios
and the position of the concentrated mass. The elastic beam considered in this
study is clamped on the moving cart which is free to move without friction. In this
case, in general, the open-loop behavior of the system appears between that of
a clamped-free beam and sliding-free beam [33]. For example, if the concentrated
mass and the beam mass are very small compared with the mass of the cart, the
frequency equation of the system will approach that of a clamped-free beam. The
same result will be obtained if the friction and/or the gear ratio between the moving
cart and wheel shafts of the cart become very large. On the contrary, if the beam
mass becomes dominant, the frequency characteristic of the system shows that of
a sliding-free beam.

There are many research results on the change of natural frequencies with respect
to the change of the ratio between the beam mass and the concentrated mass
[1, 2, 5, 6, 8, 10, 12}15, 17, 22, 25, 28, 31, 32, 34]. Libresu [16] also obtained the
change of the damped frequency with respect to the change of the ratio between the
beam mass and the concentrated mass for various mass position. In this study,
however, the e!ect of all the mass ratios, r

1
, r

2
and r

3
, and the change in position of

the concentrated mass to the frequency equation of the beam}mass}cart system
were considered. The roots of the frequency equation (31) were obtained
numerically by utilizing the Newton}Rapson method with respect to the changes in
position of the concentrated mass for various mass ratios, r

1
and r

2
, and Figure 2

shows the "rst "ve eigenfrequencies of the equation.
As shown in Figure 2, natural frequencies become lower as r

1
increases with

respect to the same position of the concentrated mass. However, as the position of
the concentrated mass is changed, the eigenfrequencies increase and decrease



TABLE 1

Frequency equations for various beam}mass systems and comparative studies

System Conditions Resulting frequency equation Earlier studies

r
1
"0 Garcia and Inman [20],

r
2
"0 1#cos m coshm"0 Ankarali and Diken [23],

r
3
"0 Barbieri and OG zguner [25]

Bhat and Wagner [1],
Laura et al. [4]

r
1
"0 GuK rgoK ze [5]1#cos m coshmr

2
"0 Park et al. [19]

m"g #r
3
m (cosm sinh m

!sinm cosh m)"0
Fung and Shi [24], Liu and

Huang [28],
Stephen [29]

1#cos m coshm
#r3m

4
[2 sin (m!g) cosh (m!g) Maurizi and BelleH s [14],

!2 cos (m!g) sinh (m!g) Low [15],
r
1
"0 !2 sin g cosh g#2 cos g sinhg GuK rgoK ze [30],

r
2
"0 #cos (m!2g) sinh m Hamdan and Shabaneh [31],

!sin m cosh (m!2g) Hamdan and Dado [32]
#cos m sinh m!sin m cosh m]"0

r
1
"0 1#cos m cosh m Garcia and Inman [20],

r
3
"0 #r2

m
(sin m coshm#cos m sinh m)"0 Barbieri and OG zguner [25],

Blevins [33]

1#cos m coshm#r
1
(1#cos m cosh m)

g"0
#r2

m
(sin m cosh m#cos m sinh m)"0

1#cos m cosh m#2r
1
cos m cosh m Ge et al. [18],

m"g #r2
m
(cos m sinh m#sin m cosh m) Park et al. [19],

#r
3
m (cos m sinh m!sin m cosh m)"0 Low [22]
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repeatedly. In that case, there are the same number of nodal points, at which the
frequencies of the beam with a concentrated mass match those of the beam without
concentrated mass, with the number of modes. In the case of a simply supported
beam which carries a concentrated mass, the eigenfrequencies are symmetric with
respect to the middle point of the beam [35]. Increasing r

2
, on the other hand,

makes the beam more sti!, and thus the frequency deviation with respect to
increasing r

1
is reduced.



Figure 2. The "rst "ve roots of the frequency equation (31) with respect to the change of the
position of the concentrated mass for various mass ratios, r

1
and r

2
: (a) r

2
"0)01, (b) r

2
"0)1, (c)

r
2
"0)5, (d) r

2
"2. 2, r

1
"0; } }, r

1
"0)01; - - -, r

1
"0)1; ) ) ) ) ), r

1
"0)5; )} ) }, r

1
"1; - ) - ), r

1
"2.
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Chai and Low [36] showed that weights placed at the bottom (h/l"0) have no
e!ect on the frequency: namely, the ratio of natural frequencies between the loaded
and unloaded beam is constant. However, as seen in Figure 2, the di!erences in



Figure 3. The "rst four roots of the frequency equation (31) with respect to the change of the mass
ratio r

1
for various positions of the concentrated mass: (a) r

2
"0)1, (b) r

2
"1.2, h/l"0; } }, h/l"0)2;

- - -, h/l"0.4; ) ) ) ) ), h/l"0)6; } ) } ), h/l"0)8; - ) - ), h/l"1.

602 S. PARK E¹ A¸.
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natural frequencies between the loaded and unloaded beam near h/l"0 become
large as r

1
increases, especially at large r

2
. This result is due to the e!ect of the mass

ratio r
1

which is not considered in reference [36]. As seen in Table 1, the increase in
the concentrated mass, m, increases r

1
in the "fth system or, equivalently, the base

mass in the fourth system, and the natural frequencies decrease as r
1

or the base
mass increases as reported in reference [22].

Figure 3 shows the "rst four mode solutions of the frequency equation (31)
with respect to the changes in the mass ratios, r

1
and r

2
, for various values of h/l. In

Figure 3, it can be seen that the frequencies become lower as r
1

increases. However,
the frequencies do not show any correspondence with respect to varying h/l because
the eigenfrequencies increase and decrease repeatedly as h/l varies as shown in
Figure 2. Comparing the results in (a), r

2
"0)1, and (b), r

2
"1, the frequency

deviation gets smaller as r
2

increases, mainly at lower eigenfrequencies. This shows
that the e!ect of the lumped mass on the natural frequencies of the beam becomes
smaller, especially at lower frequency modes, if the beam becomes sti!.

The frequency equation by the unconstrained modal analysis, equation (31), was
compared with that by a constrained one, the frequency equation of the third
system in Table 1, and Figure 4 shows the di!erence between the two methods. In
Figure 4, the cart mass and beam mass were given as 10 and 1 kg respectively, and
the concentrated mass was changed from 0 to 20 kg at (a) h/l"0)5 and (b) h/l"1.
As seen in Figure 4, the di!erences in natural frequencies between the two methods
become more signi"cant as the mass ratio increases, especially near the "rst mode,
although the di!erence between the two methods is negligible at higher modes as
reported in reference [25].

Using the obtained frequency equation, the mode shapes are derived in the next
subsection.

3.3. MODE SHAPES

If a function o(y) is de"ned as

o (y)O o
0
#md(y!h), (32)

the orthogonality condition is given as follows (see Appendix A):

P
l

0

o (y)t
i
(y)/

j
(y) dy"d

ij
, (33)

where d
ij

is the Kronecker delta. From the orthogonality condition in equation (33),
t
i
(h) is obtained as (see Appendix B)

t
i
(h)"

1

GmA1!
C

i
1!D

i
B#o

0 P
l

0

F
i
(y)CFi

(y)!
C

i
1!D

i
D dyH

1@2
(34)



Figure 4. Comparison of the "rst three roots of the frequency equation by the unconstrained
method, equation (31), with the constrained method, the third equation in Table 1, with respect to the
change of the concentrated mass at M"10kg, m

b
"1kg: (a) h/l"0)5, (b) h/l"1. *, unconstrained

method; } }, constrained method.
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Then, t
i
(y) and b

i
for given k

i
are obtained from equations (29) and (26)

respectively.
Figure 5 shows the normalized mode shapes, /

i
(y)"t

i
(y)!b

i
, corresponding

to the "rst "ve modes of the frequency equation (31) when the system parameters
listed in Table 2 are used.

The e!ects of the changes in the mass ratio r
1

on mode shapes were considered
and Figure 6 shows "ve normalized mode shapes corresponding to the "rst "ve



Figure 5. Five normalized mode shapes corresponding to the "rst "ve roots of the frequency
equation (31) with respect to the change of the position of the concentrated mass at M"10kg,
m"1kg, m

b
"0)788kg, and l"1m: (a) h"0m, (b) h"0)2m, (c) h"0)4m, (d) h"0)6m, (e) h"0)8m,

(f ) h"1m. *, /
1
(y); } } /

2
(y); - - -, /

3
(y); ) ) ) ) ), /

4
(y); - ) - ), /

5
(y).

TABLE 2

System parameters

Parameters Value

Mass of cart, M 10)0 kg
Length of elastic beam, l 1)0 m
Mass per unit length of elastic beam, o

0
0)788 kg/m

Young's modulus of elastic beam, E 2)07]1011N/m2
Area moment of inertia of elastic beam, I 5)208]10~11 m4
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Figure 6. Five normalized mode shapes corresponding to the "rst "ve roots of the fre-
quency equation (31) with respect to the change of the concentrated mass at M"10kg, m

b
"0)788kg,

l"1m and h"0)5m: (a) the "rst modes, (b) the second modes, (c) the third modes, (d) the fourth
modes, (e) the "fth modes.*, m"0kg; } } m"0)1kg; - - -, m"1kg; ) ) ) ) ), m"10kg; } ) } ), m"20kg.
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roots of the frequency equation (31) with respect to the changes in concentrated
mass when the mass is attached at h/l"0)5. The concentrated mass, m, was
changed from 0 to 20 kg, and the system parameters listed in Table 2 were used in
the calculation. As shown in Figure 6, mode shapes are changed considerably as the
concentrated mass varies. However, the third and the "fth mode shapes are
changed little because the nodal points of the third and the "fth modes near
h/l"0)5 are 0.51 and 0)5 respectively.
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3.4. A SPECIAL CASE

All the equations developed in the previous three subsections work well even in
extreme cases where the lumped mass is concentrated at the tip, h"l, or bottom,
h"0, of the beam. When m"0, however, A(y) in equation (21) and C in equation
(26) vanish, and thus D in the equation becomes 1. The condition

D!1"0 (35)

gives the fourth frequency equation in Table 1, but it also makes it impossible to
compute equations (29) and (34). This problem can be avoided by the following two
methods. The "rst one is letting the mass of the cart be M!m and putting the
position of the concentrated mass, m, at the bottom, h"0, of the beam. This
method gives the same results as with the fourth system in Figure 1. The other
method is letting m"e where e is a positive in"nitesimal value and putting the
mass at any value in 0)h)l.

Table 3 shows the "rst "ve k
i
and b

i
by the above two methods respectively. As

shown in Table 3, the di!erence between the two methods is negligible.

3.5. BEAM DEFLECTIONS

Substituting equations (14) and (32) into equation (12) and multiplying both sides
of the resulting equation by /

j
(y) and integrating over the problem domain, one

obtains

=
+
i/1

[qK
i
(t)#u2

i
q
i
(t)] P

l

0

o(y)t
i
(y)/

j
(y) dy"!aK (t) P

l

0

o (y)/
j
(y) dy. (36)

Since equation (10) can be rewritten as

b
j
"!

1
M

t
P

l

0

o (y)/
j
(y) dy, (37)
TABLE 3

Comparison of the ,rst ,ve k
i
and b

i
for (a) M"9 kg, m"1 kg and h/l"0 with

(b) M"10 kg, m"0)00001 kg and h/l"1

i (a) (b)

k
i

b
i

k
i

b
i

1 1)896696 !0)066232 1)896672 !0)066232
2 4)711149 !0)037850 4)711089 !0)037850
3 7)864662 !0)022430 7)864562 !0)022430
4 11)002652 !0)016095 11)002513 !0)016095
5 14)142709 !0)012542 14)142530 !0)012543
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substitution of equations (9) and (37) into equation (36), for i"j, leads to

qK
i
(t)#u2

i
q
i
(t)"f (t)b

i
, (38)

for i"1, 2,2, R. Then, q
i
(t) is obtained by integrating equation (38) for given

u
i
and applied force, f (t).
For given t

i
(y), b

i
and q

i
(t), the beam de#ection is given as

w(y, t)"
=
+
i/1

/
i
(y)q

i
(t)"

=
+
i/1

[t
i
(y)!b

i
]q

i
(t), (39)

and accordingly, the position of the cart is given as

x (t)"a(t)#
=
+
i/1

b
i
q
i
(t). (40)

For simulation purpose, we need assumed-mode solutions as shown in the next
subsection.

3.6. ASSUMED}MODE METHOD

Assumed-mode solutions for a "nite number of eigenvalues are obtained from
previous development by considering the "rst n terms of equations (39) and (40).
The de#ection of the elastic beam and the displacement of the cart are expressed,
respectively, in terms of n mode shapes using the obtained t

i
(y), b

i
and q

i
(t) as

follows:

w(y, t)"
n
+
i/1

[t
i
(y)!b

i
]q

i
(t) (41)

and

x (t)"a (t)#
n
+
i/1

b
i
q
i
(t). (42)

Now, the inhomogeneous equations (1)}(3) can be transformed into a set of n#1
second-order ordinary di!erential equations of the form

A
M

t
0

0
IB A

aK
qK
i
B#A

0
0

0
KB A

a
q
i
B"A

1
b
i
B f (t), (43)

for i"1,2, n, where K"diag Mu2
i
N is an n]n sti+ness matrix. This equation is

solved by the fourth order Runge}Kutta method for arbitrarily given forcing
function f (t).
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4. NUMERICAL SIMULATIONS

Numerical simulations were carried out to examine the open-loop responses of
the system to an arbitrarily designed forcing function. The parameters listed in
Table 2 are used in the simulations.

Figure 7 shows the global position of cart, x(t), the global tip position of the
beam, x

T
(t), the global position of the concentrated mass, x

h
(t), the local de#ection

where the concentrated mass is attached, w
h
(t), and the local de#ection at the tip of

the beam, w
T
(t), respectively, where x

T
(t)"x (t)#w

T
(t), x

h
(t)"x(t)#w

h
(t),

w
h
(t)"w(h t), and w

T
(t)"w (l, t), when the concentrated mass is 1 kg, the mode
Figure 7. The open-loop responses to an arbitrarily designed forcing function when m"1kg: (a)
h/l"0, (b) h/l"0)2, (c) h/l"0.4, (d) h/l"0)6, (e) h/l"0)8, (f ) h/l"1.*, x(t); } } , x

T
(t); - - - , x

h
(t); ) ) ) ) ,

w
h
(t); } ) } ), w

T
(t).



Figure 8. The open-loop responses to an arbitrarily designed forcing function when m"5kg:
(a) h/l"0, (b) h/l"0)2, (c) h/l"0.4, (d) h/l"0)6, (e) h/l"0)8, (f ) h/l"1.*, x(t); } } , x

T
(t); - - - , x

h
(t);

) ) ) ) , w
h
(t); } ) } ), w

T
(t).
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number n is 3, and the following forcing function is applied:

f (t)"G
20N when 0(t)0)1,

!20N when 1)0(t)1)1,

0 N otherwise.

Figure 8 shows the results of simulations for the same conditions with the previous
simulations except that m"5 kg. In both "gures it is natural that x

h
(t) coincides

with x(t) when h"0 because w(0, t)"0, and that w
T
(t) and x

T
(t) coincide with

w (t) and x (t) respectively, when h"l.

h h
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Through these analyses of motion, one can easily notice that not only the
position of the lumped mass but also the mass ratios a!ect the vibrational motion
of the beam}mass}cart system. Furthermore, the motion of the concentrated mass
and the #exible beam a!ect that of the cart, and the amplitude of the initial
de#ection of the beam is proportional to the lumped mass and to the position of the
mass, h, as shown in Figures 7 and 8. It is noteworthy that the de#ection w

h
"0

regardless of the magnitude of the concentrated mass when g"0, i.e., h"0 as seen
in Figures 7(a) and 8(a) although the natural frequencies are a little di!erent from
each other.

The vibration generated at the beam by the applied force is ampli"ed or damped
out according to the natural frequency and to the instance of time when the
external force is applied. For example, when m"5 kg and h/l"0)4, the
fundamental frequency of the beam}mass}cart system is 1)562 Hz, and thus when
time t is around 1 s, the tip of the vibrating beam starts to return to the neutral
point from a backwardly de#ected position, and at this time the force applied to the
opposite direction ampli"es the vibrational motion of the beam. On the contrary,
when h/l"0)6, the fundamental frequency of the system is 0)995 Hz. Thus, when
the time t is around 1 s, the tip of the vibrating beam returns to the neutral point
from a forwardly de#ected position. Therefore, the vibration of the beam is damped
out by the force applied to the opposite direction at this time.

The control method utilizing this concept is the input-preshaping method. To
suppress the residual vibration of the elastic beam, the frequency characteristics of
the beam is important for determining the instance of time to apply the external
force [37]. Therefore, the results obtained in this study is helpful for the design of
the model-based controller to reduce the vibration of the beam}mass}cart system.
The method of analysis introduced in this study can also be used as a dynamic
simulator for this kind of beam}mass}cart systems.

5. CONCLUSIONS

In this paper, a Bernoulli}Euler beam "xed on a moving cart and carrying
a concentrated mass attached at an arbitrary position along the beam was
considered and the equations of motion which describe the global motion as well as
the vibrations motion derived. A uni"ed frequency equation which can be generally
applied to this kind of beam}mass system was also obtained. The validity of the
frequency equation was veri"ed with a vast number of comparative studies. Some
roots of the frequency equation were found for various conditions of system
parameters. It was shown that the eigenfrequencies and the corresponding mode
shapes change considerably as the mass ratios and the position of the concentrated
mass vary. The exact and assumed-mode solutions were also obtained by
unconstrained modal analysis for the beam}mass}cart system. Finally, the
open-loop responses, global motions of the beam}mass}cart system as well as the
vibrational motions of the beam by an arbitrary forcing function, were obtained by
numerical simulations. This analysis of motion based on system dynamics gives
useful information for the design of the vibration suppression controller for the
system.
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APPENDIX A: PROOF OF EQUATION (33)

Using equation (32), equation (14) can be represented as

EIt@@@@
i

(y)!u2
i
o(y)t

i
(y)"0. (A.1)

By equation (11), equation (A.1) is rewritten as follows:

EI/@@@@
j

(y)!u2
j
o(y)/

j
(y)!u2

j
o(y)b

j
"0. (A.2)
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The eigenfunction t
i
(y) is not self-adjoint by inhomogeneous boundary

conditions in equation (15). However, the eigenfunctions /(y) and t(y) satisfy

P
l

0

t@@@@
i

(y)/
j
(y) dy"P

l

0

t
i
(y)/@@@@

j
(y) dy!t

i
(y)/@@@

j
(y) K

l

0

"P
l

0

t
i
(y)/@@@@

j
(y) dy#

Mu2
j

EI
b
i
b
j
. (A.3)

The boundary conditions in equations (15) and (25) were used in equation (A.3).
Multiplying both sides of equation (A.1) by /

j
(y), integrating over the problem

domain and applying equation (A.3) to the resulting equation, one obtains

P
l

0

[EIt@@@@
i

(y)!u2
i
o (y)t

i
(y)] /

j
(y) dy

"EI P
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0
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i
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j
(y) dy!u2
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0

o (y)t
i
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j
(y) dy#Mu2

j
b
i
b
j
. (A.4)

Multiplying equation (A.2) by t
i
(y) and integrating the resulting equation from 0 to

l yields

P
l

0

[EI/@@@@
j

(y)!u2
j
o (y)/

j
(y)!u2

j
o (y)b
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(y) dy
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j
. (A.5)

because

b
i
"!

1
M P

l

0

o (y)t
i
(y) dy (A.6)

from equations (10) and (32).
Subtracting equation (A.5) from equation (A.4) becomes 0 as follows because

equations (A.1) and (A.2) are the same.

(u2
i
!u2

j
) P

l

0

o (y)t
i
(y)/

j
(y) dy"0. (A.7)

Therefore, for iOj, one can have

P
l

0

o(y)t
i
(y)/

j
(y) dy"0. (A.8)
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APPENDIX B. PROOF OF EQUATION (34)

From equations (26) and (29), the following equation is obtained:

/(y)"t(y)!b"t(h) CF(y)!
C

1!DD . (B.1)

Utilizing equations (29), (32) and (B.1), the following equation is obtained:
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For i"j, the left-hand side of equation (B.2) becomes 1 by equation (33). This gives

1"t2
i
(h) GCmA1!

C
i

1!D
i
BD#o

0P
l

0

F
i
(y) CFi (y)!

C
i

1!D
i
D dyH. (B.3)

Thus, equation (34) follows from equation (B.3).
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